Nonlinear Dynamics, Psychology, and Life Sciences, Vol. 14, Iss. 4, Oct, 2010, pp. 411-434 @2010 Society for Chaos Theory in Psychology & Life Sciences Nonlinear Dynamics of Seizure Prediction in a Rodent Model of Epilepsy Abstract: Epilepsy is a dynamical disorder with intermittent crises (seizures)
that until recently were considered unpredictable. In this study, we investigated
the predictability of epileptic seizures in chronically epileptic rats as a first
step towards a subsequent timely intervention for seizure control. We look at the
epileptic brain as a nonlinear complex system that undergoes spatio-temporal state
transitions and the Lyapunov exponents as indices of its stability. We estimated
the spatial synchronization or desynchronization of the maximum short-term Lyapunov
exponents (STLmax, approximate measures of chaos) among multiple brain sites over
days of electroencephalographic (EEG) recordings from 5 rats that had developed chronic
epilepsy according to the lithium pilocarpine rodent model of epilepsy. We utilized this
synchronization of EEG dynamics for the construction of a robust seizure prediction algorithm.
The parameters of the algorithm were optimized using receiver operator curves (ROCs) on
training EEG datasets from each rat for the algorithm to provide maximum sensitivity and
specificity in the prediction of their seizures. The performance of the algorithm was then
tested on long-term testing EEG datasets per rat. The thus optimized prediction algorithm
on the testing datasets over all rats yielded a seizure prediction mean sensitivity of 85.9%,
specificity of 0.180 false predictions per hour, and prediction time of 67.6 minutes prior to a
seizure onset. This study provides evidence that prediction of seizures is feasible through
analysis of the EEG within the framework of nonlinear dynamics, and thus paves the way for just-in-time
pharmacological or physiological inter-ventions to abort seizures tens of minutes
before their occurrence. Keywords: Epilepsy, Seizure Prediction, EEG, Dynamic Synchronization, Lyapunov Exponents |