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Abstract: Dynamical systems modeling was used to analyze fluctuations in the 
pain prediction process of people with rheumatoid arthritis. 170 people 
diagnosed with rheumatoid arthritis completed 29 consecutive days of diaries. 
Difference scores between pain predictions and next-day pain experience 
ratings provided a time series of pain prediction accuracy. Pain prediction 
accuracy oscillated over time. The oscillation amplitude was larger at the start 
of the diary than at the end, which indicates damping toward more accurate 
predictions. State-level psychological characteristics moderated the damping 
pattern such that the oscillations for patients with lower negative affect and 
higher pain control damped more quickly than the oscillations for their 
counterparts. Those findings suggest that low negative affect and high pain 
control generally contributed to a more accurate pain prediction process in the 
chronically ill. Positive affect did not differentiate the damping pattern but, 
within each oscillation cycle, patients with higher positive affect spent more time 
making inaccurate predictions than their counterparts. The current analyses 
highlight the need to account for change in data through dynamical modeling, 
which cannot be fully observed through traditional statistical techniques. 
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INTRODUCTION 

Cognition and affect play important roles in modulating the severity 
and duration of a variety of chronic pain disorders (Bair, Robinson, Katon, & 
Kroenke, 2003; Rainville, 2002). Among the cognitive processes that may 
contribute to the daily experience of chronic pain, the prediction of future pain 
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stands out as a key variable that influences the perception of aversive pain. 
Overpredictions of pain can promote maladaptive, pain-avoidant behavior while 
underpredictions of pain can contribute to an increased perception of aversive 
pain (Rachman & Arntz, 1991). Pain prediction accuracy, then, is an adaptive 
skill in the negotiation of the physical (e.g., pain flares) and environmental (e.g., 
barriers for people with diminished mobility) threats that are encountered on a 
daily basis by people with chronic pain disorders. The patterns of pain predic-
tion that give rise to accuracy over time are informative; state and trait variables 
of affective and cognitive style, for example, may be linked to general tenden-
cies to overpredict, underpredict, or accurately predict pain. However, no study, 
to our knowledge, has examined meaningful day-to-day variations in pain pre-
dictions across repeated measurements—the dynamical structure. Through such 
an approach, the vicissitudes of daily life with chronic pain can be examined in a 
manner that accounts for the mutable influences of cognition and affect. In the 
current study, we explored the dynamical structure of oscillations in the relative 
accuracy of pain predictions over time among a sample of patients with rheuma-
toid arthritis (RA), a chronic autoimmune disease of the synovial joints charac-
terized by disabling pain (Anderson, Bradley, Young, McDaniel, & Wise, 1985).  

Pain prediction accuracy occurs when an individual’s level of pain ex-
perienced matches that which he or she predicted. Although people are largely 
accurate in predicting their pain, errors in pain prediction are common 
(Rachman & Arntz, 1991). Some studies have shown a tendency for people to 
underpredict future pain (Arntz & Peters, 1995; Finan, Zautra, & Tennen, 2008; 
McCracken, Gross, Sorg, & Edmands, 1993) and others have reported that over-
predictions predominate (Arntz, van Eck, & Heijmans, 1990; Rachman & 
Lopatka, 1988). For example, people with chronic low back pain (Arntz & 
Peters, 1995) and those who are low in daily pessimism (Finan et al., 2008) tend 
to underpredict pain. On the other hand, when pain-related fear is high, avoid-
ance behaviors drive people to overpredict their pain (Arntz et al., 1990). Thus, 
there are a variety of conditions that can create the context for a particular pat-
tern of pain prediction to develop. A key departure in the current study is that we 
are not concerned with pain overprediction and underprediction per se. Rather, 
the expectation is that overpredictions and underpredictions occur systematically 
within patterns of change that move around a zero-point accuracy. To account 
for day-to-day fluctuations in pain prediction accuracy, a nonlinear dynamics 
approach is warranted. 

Dynamical Systems and the Damped Oscillator Model 

To date, fluctuations in pain predictions have been characterized as 
random, allowing tendencies in pain prediction accuracy to be accounted for by 
using means (Arntz et al., 1990; Finan et al., 2008; Rachman & Lopatka, 1988). 
The process of pain prediction, through the use of mean state analyses, has been 
treated as generally stable. Little is known about the underlying dynamical 
structure of repeated pain predictions in a naturalistic setting, where no single 
event would be expected to influence pain predictions over time. Fluctuations in 
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a variable across time may not be random error and may instead be indicative of 
meaningful structure (Butner, Amazeen, & Mulvey, 2005; Chow, Ram, Boker, 
Fujita, & Clore, 2005; Vallacher, Nowak, & Kaufman, 1994). The temporal 
evolution of meaningful structure cannot be captured by mean state analyses 
alone, but rather, may be best analyzed with dynamical models that are 
specifically designed to analyze change. In the current study, fluctuations in pain 
prediction accuracy were assessed using a daily diary. Daily diary methodology 
lends itself well to dynamical modeling techniques, because information about 
particular variables is collected from participants across several days of 
measurement (Bolger, Davis, & Rafaeli, 2003).  

An example of meaningful change in psychological processes is the 
cyclical or oscillatory motion in which fluctuations are periodic. Those fluctua-
tions can be sustained (constant amplitude over time), amplified (increasing am-
plitude over time), or damped (decreasing amplitude over time). For example, 
fluctuations in the positive emotions of college students were sustained over 
time, repeatedly peaking during the weekend and dropping sharply on Mondays 
(Chow et al., 2005). Amplified oscillations have been observed in adolescent 
substance abuse (Boker & Graham, 1998). Small changes in cigarette or alcohol 
use were followed by amplified changes, resulting in increasingly unstable 
adolescent substance abuse. Damped oscillations have been observed in the 
emotional well-being of recently bereaved widows when they sought emotional 
support (Bisconti, Bergeman, & Boker, 2004). In that study, emotional well-
being fluctuated with the loss of a spouse, while the amplitude of those 
fluctuations was reduced over time in the presence of a strong support structure.  

The nonlinear damped oscillator model has been used previously to 
capture cyclical motion in a diverse set of phenomena from pendulum motion 
(Abraham & Shaw, 1992) to juggling (Beek & Beek, 1988) and other rhythmic 
movements (Beek, Schmidt, Morris, Sim, & Turvey, 1995; Butner et al., 2005). 
In the current study, the nonlinear damped oscillator model was used to examine 
the nature of fluctuations across time in pain prediction accuracy. A rather con-
sistent finding in the pain prediction literature is that people become more accu-
rate in predicting their pain as they gain experience doing so (Crombez, Vervaet, 
Baeyens, Lysens, & Eelen, 1996; Rachman & Arntz, 1991). Thus, we expected 
that damping in pain prediction accuracy would occur over time in our sample, 
such that individuals would initially experience rather large fluctuations in their 
ability to accurately predict their pain, but those fluctuations would decrease in 
amplitude with experience.  

A visual representation of oscillations is the phase portrait in which a 
data point’s position and velocity (speed) are plotted against each other. For the 
current study, phase portraits represent pain prediction accuracy against the 
frequency at which pain prediction accuracy changes. Phase portraits are useful 
for the detection of influences on oscillations that change the amplitude of 
oscillations through insertion or deletion of energy. Energy typically enters the 
cycle at specific points through a mechanism known as an escapement 
(Abraham & Shaw, 1992; Butner et al., 2005), deforming the phase portrait. 
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Changes in the speed of oscillations (e.g., number of cycles per unit time) are 
more subtle and might not be observed visually in the phase portrait, because 
similar positions are traversed from point to point within a cycle. They are 
important, though, as they may reflect occurrences like rapid progression 
through accurate pain predictions and slow progression through inaccurate pain 
predictions. Oscillation amplitude and oscillation frequency in psychological 
phenomena might therefore be self-adjusted through mechanisms related to 
goals, intentions and personal actions. 

Given the influence of pain predictions on the way RA patients think, 
behave and experience pain, it is possible that pain predictions will vary based 
on individual differences in affect and perceptions of control. For chronic pain 
patients, high positive affect (PA) can serve as a resilience resource in the face 
of pain flares, and contribute to lower levels of pain over time (Zautra, Johnson, 
& Davis, 2005). Alternately, high negative affect (NA) can alter an individual’s 
perception of pain through a variety of endogenous pathways (Janssen, 2002) 
and, thus, potentially interfere with the ability to accurately predict future pain 
episodes. A high sense of control over pain is related to greater psychological 
well-being (Jensen & Karoly, 1991), while illness uncertainty is associated with 
higher stress and anxiety (Reich, Johnson, Zautra, & Davis, 2006). High PA, 
low NA, and high pain control may, thus, foster the acquisition of the adaptive 
skill of accurately predicting pain and provide a buffer against protracted 
periods of erroneous pain prediction. 

Hypotheses 

The current study included a daily diary containing 29 contiguous days 
of pain predictions matched with next-day pain experience ratings from a 
sample of patients with RA. By taking the difference between pain predictions 
and the next day’s experience ratings, a day-to-day index of pain prediction 
accuracy was obtained. The nonlinear damped oscillator model was used to 
characterize meaningful structure in patterns of pain prediction accuracy over 
time. Across participants and conditions, pain prediction accuracy was expected 
to damp over the course of the diary. We hypothesized that people high in PA, 
low in NA and high in pain control would evidence faster damping toward pain 
prediction accuracy and spend less time making erroneous pain predictions than 
people low in PA, high in NA and low in pain control. In dynamical terms, PA, 
NA and pain control can serve as escapements, changing the contour of the 
phase portrait of pain prediction accuracy and contributing to varying rates of 
progression through accurate versus inaccurate pain predictions.  

METHOD 

Participants 

Participants were 170 people (45 men, 125 women; 21-86 years old (M 
= 55.2, SD = 13.3)) with a physician-confirmed diagnosis of RA. The sample 
was comprised primarily of Caucasians (92%). Approximately 42% of the parti-
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cipants reported that they had graduated from college, and 36% indicated that 
they were currently employed. Approximately 67% of the sample reported an 
annual income of greater than $30,000. Participants received $90 for their 
participation. Recruitment was conducted in the Phoenix, Arizona metropolitan 
area at local health fairs, physicians’ offices, the Phoenix Veterans Affairs Hos-
pital and through the Arthritis Foundation. People were excluded from the study 
if they had Lupus, were taking estrogen-replacement drugs, or if they had signi-
ficant cognitive impairment. Participants all provided informed consent, ap-
proved by the Institutional Review Board at the authors’ university, and were 
treated in accordance with the ethical principles of the American Psychological 
Association. 

Procedure 

The data presented in this report were extracted from a larger study that 
was aimed at investigating characteristics of RA patients through daily diary 
methodology. RA diagnosis was first confirmed with participants’ physicians. 
Participants were then sent a daily diary set with stamped envelopes addressed 
to the research team. A member of the research team contacted participants by 
phone and provided detailed instructions to aid in the completion and mailing of 
the diaries. They were instructed to complete one diary each night within 30 
minutes of bedtime, and to mail the diary the next morning in a prepaid 
envelope.  

Postmark verification was monitored for discrepancies between the 
postmark date and the date reported for the completed diary. If discrepancies 
were observed, then participants were contacted immediately and urged to 
comply with the time-sensitive demands of the study. After completing and 
mailing the diaries for three days, participants were contacted by phone, asked if 
they had any questions regarding the diaries and encouraged to continue com-
pleting the diaries every evening for the remainder of the study. Analyses re-
vealed that 97.3% of the diaries included in the current study were received with 
a verified postmark. Of that number, 82.6% of diaries were postmarked on the 
morning after the diary was completed.  

Measures 
Pain Prediction Accuracy 

At the beginning of each daily diary, participants were asked to 
estimate their “Average Level of Arthritis Pain Today.” At the end of each daily 
diary, participants were asked to estimate “How Much Pain Do You Expect 
Tomorrow?” Participants made their estimates on the 101-Point Numerical Rat-
ing Scale (NRS; Jensen, Karoly, & Braver, 1986). Estimates ranged from 0 (“No 
Pain”) to 100 (“Pain As Bad As It Can Be”). Numerical pain rating scales are 
equally effective as visual analog scales in detecting increases and decreases in 
pain ratings (Price, Bush, Long, & Harkins, 1994). Difference scores were then 
calculated between pain prediction estimates and corresponding next-day pain 
experience estimates. There were 28 corresponding pain prediction and pain ex-
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perience estimates, which resulted in a time series of 28 daily diary scores 
showing the evolution of pain prediction accuracy.  

Positive Affect (PA) and Negative Affect (NA) 

PA and NA were measured in the daily diary using the Positive and 
Negative Affect Schedule (Watson, Clark, & Tellegen, 1988). Participants rated 
10 standard mood adjectives each for PA and NA using a 5-point scale from 1 
(“very slightly or not at all”) to 5 (“extremely”). Internal reliability was good, as 
Cronbach’s alpha was 0.96 for PA and 0.93 for NA, calculated from items 
aggregated across diary days. 

Pain control 

Participants rated the degree of their perceived control over pain each 
day using a 11-point scale from 0 (“no control at all”) to 10 (“complete control”) 
(Tennen, Affleck, & Zautra, 2006).  

Data Analytic Strategy 

Included were data for which observations were continuous throughout 
the 29 days of measurement. Participants who missed two or more consecutive 
pain prediction or pain experience values at any time in the 29 days of 
measurement were excluded from the sample. Single missing values were 
interpolated by taking a mean of the immediately preceding and immediately 
subsequent values. Participants missing a value on the final observation were 
excluded from the sample because there was no next-day observation with 
which to interpolate. In total, 57 participants were removed from the original 
sample of 227 to arrive at a final sample of 170 participants, a large N for 
dynamical systems analysis (Butner et al., 2005). The excluded participants did 
not differ from the sample participants in any major study variable, including 
PA (Sample: M = 2.72, SD = 0.68; Excluded: M = 2.61, SD = 0.83), F(1, 226) = 
1.16, p = NS, NA (Sample: M = 1.32, SD = 0.35; Excluded: M = 1.34, SD = 
0.35), F(1, 226) = 0.16, p = NS, pain control (Sample: M = 6.11, SD = 2.15; 
Excluded: M = 6.74, SD = 2.30), F(1, 226) = 3.43, p = NS, or average pain 
(Sample: M = 36.33, SD = 18.61; Excluded: M = 31.60, SD = 17.99), F(1, 226) 
= 2.73, p = NS, all aggregated across diary days. 

Following earlier precedent (Butner et al., 2005), we used a multilevel 
modeling approach to the damped oscillator model. Multilevel modeling is use-
ful when modeling repeated observations over time and increases the power to 
detect an effect relative to other regression-based approaches. For studies of dy-
namical systems models, multilevel modeling can capture a within-person os-
cillatory relationship when modeling time-varying covariates such as velocity 
and displacement. Fitting the damped oscillator model to the time series of pain 
prediction accuracy required centering and detrending pain prediction accuracy 
and calculating velocity, acceleration and nonlinear terms from pain prediction 
accuracy. 
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Centered and Detrended Pain Prediction Accuracy (x(t)) 

Pain prediction accuracy was first centered and then multiplied twice or 
thrice to create quadratic and cubic polynomials, respectively. A regression 
equation was then modeled in which the centered pain prediction accuracy 
variable and its polynomials served as independent variables and pain prediction 
accuracy served as the dependent variable. The residuals of this equation 
represented centered and detrended displacement, x(t), or the value of pain 
predition accuracy at time t. A score of zero identified an individual who was 
completely accurate on a given observation. Positive and negative displacements 
represented overprediction and underprediction, respectively. 

Velocity (dx(t)/dt) and Acceleration (d2x(t)/dt2) of Pain Prediction Accuracy 

Local linear approximation was used to estimate velocity and 
acceleration from the pain prediction accuracy time series. The local linear 
approximation method is a particularly good derivative estimation procedure in 
data with relatively few repeated measurements (for a review, see Boker & 
Nesselroade, 2002).1 Velocity, dx(t)/dt, or the rate of change in pain prediction 
accuracy at time t, and acceleration, d2x(t)/dt2, or the rate of change in the rate of 
change in pain prediction accuracy at time t, were the 1st and 2nd order 
derivatives of pain prediction accuracy, respectively. A one-step time delay was 
used to calculate the derivatives. 

The Linear Damped Oscillator Model 

Acceleration, velocity and displacement are used as the variables that 
comprise damped oscillator models. In the linear damped oscillator model, 

 
 

                                                                , (1) 
 
 
zeta (ζ) is the linear damping coefficient, which represents linear changes in the 
amplitude of fluctuations through time, and eta (η) is the squared frequency of 
the oscillations. In the linear damped oscillator model, energy enters or exits the 
system at a constant rate. The result is a uniform damping effect on all data 
points, which results in a distinctly circular phase portrait. In reality, however, 
linear systems with completely circular phase portraits are unusual (Butner et 
al., 2005). 

The Nonlinear Damped Oscillator Model 

In contrast to the idealized linear influences, nonlinear influences result 
in elongation or compression of phase portraits (sometimes subtle) such that the 
phase portrait is no longer circular. In the nonlinear damped oscillator model for 
pain prediction accuracy, 
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  (2) 
 
  , 
 
all nonlinear terms are simply various products of velocity and/or displacement: 
Rayleigh (ρ), van der Pol (ν), Duffing (δ), and π-mix odd (μ). Rayleigh and van 
der Pol are nonconservative terms, characterizing changes in amplitude that are 
a function of velocity alone or both position and velocity, respectively. Duffing 
and π-mix odd are conservative terms, characterizing changes in frequency that 
are a function of position alone or both position and velocity, respectively. The 
variety of shapes a phase portrait can assume requires a coordinated analysis of 
these four characteristic nonlinearities (Beek et al., 1995). Note that if the 
estimates of all the nonlinear terms equals zero, then the nonlinear damped 
oscillator model in Eq. 2 reduces to the linear damped oscillator model in Eq. 1.  

Multilevel Model 

We applied a multilevel modeling approach to the nonlinear damped 
oscillator model. For studies of dynamical systems models, multilevel modeling 
can capture a within-person periodic relationship when modeling time-varying 
covariates such as velocity and displacement. The Level 1 multilevel model,  

 
Level 1: accelerationtj = β1j (velocitytj) + β2j (displacementtj) +  

                                                       β3j (Rayleightj) + β4j (van der Poltj) + (3) 
                                                       β5j (Duffingtj) + β6j (π-mix oddtj) + rtj,  
 
mirrors the nonlinear damped oscillator model in Eq. 2 with changes only to the 
mathematical syntax. Acceleration for an individual j at a given time point t was 
the dependent variable. The intercept was excluded from this analysis because 
we were not interested in average acceleration, but rather the relation of velocity 
and displacement to acceleration to characterize periodicity in pain prediction 
accuracy. Here, the linear terms (velocity and displacement) and the nonlinear 
terms (Rayleigh, van der Pol, Duffing, and π-mix odd) served as predictors. 
Zeta, eta and the nonlinear coefficients from Eq. 2 become the betas (β), or re-
gression coefficients, in Eq. 3. β1 was the damping coefficient and β2 was the 
coefficient for squared frequency. β3 through β6 were the coefficients for the 
nonlinear terms. Additionally, a random error component (r) was included in the 
model. 

When the values of the regression coefficients were estimated via our 
technique, their interpretation is opposite to the standard interpretation. The sign 
of the β1 estimate indicates whether the process is damping (positive) or 
expanding (negative). Larger absolute magnitude estimates of β1 are indicative 
of stronger damping or expansion. The square root of β2 is the frequency of the 
oscillations (in radians). Larger estimates of β2 are indicative of more rapid 
fluctuations. Negative estimates for nonconservative nonlinear terms (β3, β4) are 
indicative of nonlinear expansion, and positive estimates are indicative of 

 
  )(

)(
)()(

)()(
)(

)()(
2

32
3

2

2

tx
dt

tdx
txtx

dt

tdx

dt

tdx
tx

dt

tdx

dt

txd












 



 
 
 
 
 
 
 
 NDPLS, 14(1), Pain Prediction Accuracy 35 

nonlinear damping. Negative estimates for conservative nonlinear terms (β5, β6) 
are indicative of slower progression in the vicinity of an accurate prediction of 
pain. Importantly, positive estimates indicate that the individual is rapidly pro-
gressing through maximally accurate predictions. Behavior that can be described 
by positive nonconservative and negative conservative nonlinear terms may be 
adaptive in terms of pain prediction accuracy because those terms suggest an ap-
proach toward accuracy over the diary and spending more time day-to-day at 
accurate pain predictions. 

Individual differences in average damping, squared frequency and each 
nonlinear term, and the variation in damping, squared frequency and each 
nonlinear term across individuals were assessed at Level 2. At Level 2 the 
regression coefficients for the Level 1 predictors became the dependent 
variables: 

 
              Level 2: β1j = γ10 + ω1j  (4) 
 
              Level 2: β2j = γ20 + ω2j, (5) 
 
where the gammas (γ) were the average for each Level 1 coefficient (β) and the 
omegas (ω) were the interindividual variations in each coefficient across people. 
The Level 2 equations for each of the nonlinear terms were identical in form to 
the Level 2 equations for the linear terms only the dependent variables (β) 
changed. 

All multilevel analyses were conducted using SAS PROC MIXED 
(Littell, 1996). Following the precedent of Singer (1998), the independent 
variables were also modeled as random effects and goodness-of-fit tests were 
used to determine if inclusion of any of the variables as random effects produced 
a model with a better fit of the variances and covariances than a model that ex-
cluded them. Only displacement improved the fit of the model. The final model, 
then, included displacement modeled as both a fixed and a random effect. Addi-
tionally, a first-order autoregressive variance-covariance matrix was chosen to 
model the within-subjects variance on the dependent variables.  

Modulation in pain prediction accuracy via other psychological processes 

Our final analytic goal was to determine if stable trait-like differences 
in NA, PA and pain control influenced the periodicity observed through either 
the linear or the nonlinear terms. To accomplish this, we separated out indivi-
duals in the top (high NA, PA and pain control) and bottom (low NA, PA and 
pain control) thirds (n = 56 in each third) for each variable based on their 
average scores aggregated across diary days. The model specified in Eq. 2 was 
then run separately for each group, which produced distinct, group-membership-
dependent coefficient estimates.  
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RESULTS 

Changes in Pain Prediction Accuracy Across the Daily Diary 

Fixed effects for the linear and nonlinear terms in Eq. 3 were estimated 
to determine whether pain prediction accuracy followed a damped oscillator 
pattern across participants. The chi square test of the model over and above a 
null model identified this as a good description of the temporal relationships, 
χ2(2) = 450.79, p < .001. Table 1 depicts all of the beta coefficients and cor-
responding significance levels that were yielded by the model. All beta estimates 
were entered into a 4th order Runge-Kutta algorithm to simulate oscillatory pat-
terns in the full model. Figure 1 depicts a simulated time series (Panel A) and 
phase portrait (Panel B) of pain prediction accuracy. Pain prediction accuracy 
oscillated between underprediction (below zero) and overprediction (above zero) 
throughout the time series. A damping trend was observed as the oscillation am-
plitude decreased over the time series (Panel A) and there was an inward spiral 
in the phase portrait (Panel B). The fact that the inward spiral was compressed, 
deformed and distinctly non-circular provided visual evidence for the presence 
of escapements in the full model.  

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Time series (Panel A) and phase portrait (Panel B) of pain prediction 
accuracy simulated using a 4th order Runge-Kutta algorithm.  The diminished 
oscillation amplitude in the time series and inward spiral in the phase portrait are 
both indicative of nonlinear damping. 

The shape of the oscillatory pattern presented in Figure 1 resulted from 
the contribution of nonlinear terms. Both Rayleigh, β = -1.2 X 10-4, t(4414) = -
3.42, p < .001, and π-mix odd, β = -3.9 X 10-4, t(4414) = -5.78, p < .001, were 
significant predictors. Further, past research has indicated that these nonlinear 
terms are highly correlated, and so it is reasonable to assume that the overlap 
should generate slight multicollinearity under the regression-style model (Beek 
& Beek, 1988; Butner et al., 2005). Thus, even terms that did not meet the a 
priori p<.05 threshold may have contributed to the shape of the oscillatory 
pattern.  
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Upon inspection of either panel in Fig. 1, one will notice a damping 
trend of seven cycles across the diary, with each new cycle starting at a position 
closer to complete pain prediction accuracy (i.e., the zero point) than the prior 
one. The frequency estimate allowed us to calculate how many diary days were 
required, on average, to complete one cycle of pain prediction, an example of 
which is underprediction through an accurate estimate to overprediction and 
back again. The estimate for frequency was significant, β = -2.74, t(4414) = -
86.58, p < .001. Following the procedure outlined by Butner et al. (2005), we 
determined that the frequency per day was 0.26, indicating that approximately 
25% of a pain prediction accuracy cycle was accounted for by one observation. 
Therefore, four days of making pain predictions constituted one full cycle.  

Patterns in Pain Prediction Accuracy Vary as a Function of Individual 
Difference Variables 

Variations in the oscillatory patterns of pain prediction accuracy as a 
function of NA, PA and pain control were also examined. All three variables 
were separately modeled as interaction terms with each of the linear and 
nonlinear terms in the original model. A significant NA x Rayleigh interaction 
emerged, β = -1.5 X 10-4, t(4321) = -2.69, p < .01, indicating that NA moderated 
the nonlinear damping pattern of pain prediction accuracy. NA did not 
significantly moderate any other terms of the model. In a separate model, there 
was a significant PA x Duffing interaction, β = -6.00 X 10-5, t(4328) = -2.92, p < 
.01, suggesting that PA moderated the nonlinear frequency of oscillations 
observed within people. There were no other significant PA interactions. 
Finally, pain control was examined as an interaction term, yielding significant 
pain control x van der Pol, β = 3.9 X 10-5, t(4318) = 2.47, p < .05, and pain 
control x Duffing, β = 1.30 X 10-5, t(4318) = 2.01, p < .05, interactions, 
suggesting that pain control moderated both nonlinear damping and the 
frequency of oscillations. No other significant pain control interactions emerged.  

We took two approaches to measuring the amount of variance 
explained by the observed effects. First, we compared the within-person 
variance component of an unconditional (null) model with that of a model 
containing only the linear terms. This is accomplished by subtracting the 
conditional variance from the unconditional variance, and then dividing by the 
unconditional variance. The resulting pseudo-R2 of the linear-only model 
explained 72% of the variance in acceleration, which was the dependent variable 
in all models. Together, the linear terms modeled simultaneously with individual 
difference variables, nonlinear terms, and their interactions explained 73% of the 
variance (pseudo-R2=.73) in acceleration, indicating a 1% increase in variance 
accounted for by the full model over and above a linear effects-only model.  

We then focused on decomposing the variance explained by the 
individual difference variable x nonlinear term interactions compared with that 
explained by the individual difference variable main effects alone. In these 
analyses, we first fit models in which acceleration in pain prediction was 
predicted as a function of velocity, displacement, an individual difference 
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variable (NA, PA, or Pain Control), and a nonlinear term (Rayleigh, van der Pol, 
or Duffing). We then calculated a pseudo-R2 by entering an individual difference 
variable x nonlinear interaction term and compared within-person variance 
components. Those data, along with beta weights and associated p-values for the 
individual difference variable main effect and interaction terms are presented in 
Table 2. Due to concerns of multicollinearity resulting in inflated alpha values 
for interactions tested individually in this post-hoc procedure, we only included 
interactions that were statistically significant based on our a priori threshold in 
the original analyses from the full model.  

Results of this post hoc analysis indicated that much of the variance in 
pain prediction acceleration was explained by the main effects-only models, as 
indicated by the small pseudo-R2 values. Although the variance in pain predic-
tion acceleration associated with the interactions was small, those interactions 
result in meaningful differences in oscillatory patterns when considering ex-
tremes on the individual difference variables (NA, PA and pain control). Such 
differences can be observed in the top and bottom third simulations that follow.  

 
Table 2. Variance Explained (pseudo-R2) by Interactions Between Individual 
Difference Variables and Nonlinear Terms Over and Above Corresponding Main 
Effects-Only Models 

Model Term β pseudo-R2 
NA -0.69* −
NA X Rayleigh -0.0001** 0.006
PA 0.24 −
PA X Duffing -4.00 x 10-5* 0.004
Pain Control 0.23*** −
Pain Control X van der Pol 7.70 x 10-5*** 0.010
Pain Control X Duffing 1.20 x 10-5** 0.001

*p < .05, **p < .01, ***p < .001. 
The significant interactions motivated subsequent exploration of differ-

ences in oscillatory patterns as a function of patient responding along the contin-
uum of NA, PA and pain control. NA, PA, and pain control were aggregated for 
each participant across the diary. Fixed effects estimates were then estimated 
separately for participants in the top and bottom third on each variable. The mid-
dle third of responders on each variable were excluded from the analysis. Fixed 
effect estimates for high and low NA, PA and pain control models, respectively, 
are presented with the estimates for the full model in Table 1. The same proce-
dure was followed as with the full model: fixed effects estimates were entered 
into a 4th order Runge-Kutta algorithm to simulate oscillatory patterns for parti-
cipants in each separate model. Figure 2 depicts simulated time series of pain 
prediction accuracy (Column A) and corresponding phase portraits (Column B) 
for participants that were either high (solid lines) or low (dashed lines) on NA 
(Top Panel), PA (Middle Panel) and pain control (Bottom Panel). Starting val-
ues for the Runge-Kutta algorithm were the same in each simulation in order to 
produce comparable simulation conditions.  
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Fig. 2. Time series (Column A) and phase portraits (Column B) of pain prediction 
accuracy simulated using a 4th order Runge-Kutta algorithm for participants that 
were either in the top (solid lines) or bottom (dashed lines) thirds on negative 
affect (NA; Top Panel), positive affect (PA; Middle Panel) and pain control 
(Bottom Panel).  The effect of individual difference variables on nonlinear 
damping are displayed through the differences between groups in oscillation 
amplitude in the time series and the shape of the spiral in the phase portrait. 
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Each simulation produced the observed damping trend: oscillations 
decreased in amplitude over the course of the time series and phase portraits 
displayed inward spirals. There were observable differences in damping between 
participants who were high (solid line) and low (dashed line) on NA and pain 
control, but not between participants who were high and low on PA. People with 
low NA (dashed line) damped faster than people with high NA (solid line) 
(Figure 2, Top Panel) and people with high pain control (solid line) damped 
faster than people with low pain control (dashed line) (Bottom Panel). The result 
was that participants with low NA and high pain control were more accurate 
than their counterparts in predicting pain by the end of the diary. In contrast, 
people with high (solid line) and low (dashed line) PA were nearly 
indistinguishable (Column B, Middle Panel) in their phase portraits, although 
the significant PA x Duffing interaction suggests that those groups traversed the 
phase portrait with different frequency characteristics. 

Inspection of the time series and phase portraits provided visual evi-
dence of nonlinearities in each model. Consistent with the full model, oscilla-
tions in each sub-model were generally compressed, deformed and distinctly 
non-circular. One exception comes from participants with low pain control 
(Figure 2, Column B, Bottom Panel, dashed line). When compared to each of 
the other sub-groups, participants with low pain control damped more slowly 
and in a more circular, less nonlinear, fashion. 

DISCUSSION 

In the current study, dynamical systems modeling was used to identify 
characteristics of the underlying oscillatory structure of the pain prediction 
process in a sample of people with a chronic pain condition. The hypothesis that 
oscillations in pain prediction accuracy would damp over time was supported, 
although that damping was partly a function of nonlinear influences. Examina-
tion of fluctuations in pain predictions revealed that meaning could be assigned 
to the patterns of pain predictions that were experienced by people with RA. In 
complement to earlier means-based studies, analyses in the current study, exam-
ined through the lens of dynamical systems, indicate that RA patients exhibit an 
oscillatory pattern of pain prediction and gradually become more accurate over 
time in their ability to predict next-day pain. 

Evidence for Nonlinear Damping 

The phase portrait of the full model, in which all terms were 
represented, contained evidence of nonlinear escapements in the form of 
distorted deviations from perfect circularity. Those distortions were accounted 
for by both a nonconservative Rayleigh term and a conservative π-mix odd term. 
The Rayleigh term indicates that energy in the pain prediction accuracy cycle 
increased only after passing through an overprediction or an underprediction. 
This pattern of results suggests that, overall, individuals reacted to maladaptive 
predictions rather than anticipating those maladaptive predictions. The π-mix 
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odd term suggests that pain predictions slowly progressed near zero (accurate 
pain predictions) and rapidly progressed through large absolute values 
(maladaptive predictions). Considered together, the Rayleigh and π-mix odd 
terms indicate that acceleration in the pain prediction accuracy cycle varied 
depending on the value of the pain prediction. 

If the Rayleigh and π-mix odd terms were solely responsible for the re-
sulting oscillations, then damping would not be the predominant pattern. That is 
because the sign on the Rayleigh term in the full model suggests expansion 
rather than contraction and the π-mix odd term characterizes changes in frequen-
cy, not damping. Thus, the other terms in the model contributed to the damping 
pattern that emerged. The damping pattern observed in the full model is likely 
characterized by the linear damping and nonlinear van der Pol terms, which 
were both of proper sign to show damping. The entire context of terms should 
be considered in order to comprehend the overall oscillatory pattern. With that 
stated, both the significance of specific terms in the model and interactions bet-
ween individual difference characteristics and the specific terms in the model 
are meaningful with respect to oscillatory patterns in pain prediction accuracy.  

Contribution of Individual Differences 

Achievement of pain prediction accuracy may be rooted in typical 
moderators of the pain prediction process: NA, PA and pain control. The 
observed interactions in the full model, NA x Rayleigh, PA x Duffing, pain con-
trol x Duffing and pain control x van der Pol, imply a matching of behavior at 
the high and low ranges of measurement to distinct patterns of oscillations. We 
observed many substantial visual differences in our simulations of behavior at 
those psychological extremes. Based on the classification of nonlinearities as 
either nonconservative or conservative, those interactions suggest that NA pri-
marily affected damping, PA primarily affected the frequency of oscillation and 
pain control affected both damping and the frequency of oscillation.  

 The NA x Rayleigh interaction indicates that, while there were chan-
ges in the energy of the phase portrait for people with low NA and people with 
high NA, changes in energy were more robust for people with low NA than pe-
ople with high NA. The result was a more rapid damping toward complete ac-
curacy for the low NA group. Further examination of the phase portraits indica-
ted that energy in the phase portrait increased following points of maximum in-
accuracy, which resulted in rapid progression through maximum accuracy and 
slower progression through maximum inaccuracy within cycles. That effect was 
more enhanced for the low NA group than the high NA group. Although the low 
NA group damped more rapidly toward accuracy, a side effect of the position at 
which energy in the phase portrait changed was that they rapidly progressed 
through the most adaptive predictions and slowly progressed through the most 
maladaptive predictions.  

The effect of the PA x Duffing interaction reflected a redistribution of 
energy or change in the frequency of oscillation within cycles, which is not 
easily observed upon visual inspection of the phase portraits. Interpretation of 
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the Duffing term must be based on theory (Abraham & Shaw, 1992), which sug-
gests that changes in the frequency of oscillation are dependent on position 
alone and that energy increases less robustly at maximum positions. Those indi-
viduals who scored high in PA progressed more slowly through inaccurate pain 
predictions within cycles than people with low PA and demonstrated a more cir-
cular damped oscillation. It should be noted that this finding is opposite to our 
initial prediction that adaptive individual characteristics, such as high PA, would 
produce adaptive oscillatory patterns in achieving pain prediction accuracy.  

In contrast to the PA case, people higher in pain control had a larger 
Duffing term. For those with high pain control, increases in energy were less 
robust through points of maximal inaccuracy, such that they slowly progressed 
through accurate pain predictions within cycles. As evidenced by the pain con-
trol x van der Pol interaction, participants high in pain control damped toward 
accurate pain predictions more quickly than those with low pain control. Exami-
nation of the phase portraits for those two groups revealed that the high pain 
control group was always approximately one cycle ahead in pain prediction ac-
curacy throughout the damping process. 

It should be reiterated here that, although the nonlinear terms were 
important to the overall oscillatory trajectory, and especially to the explication 
of individual differences in that trajectory, the linear effects of velocity and dis-
placement explained the majority of the variance in acceleration. In particular, 
the amount of acceleration and deceleration in pain prediction accuracy was 
largely determined by the displacement of the pain prediction (e.g., over, under, 
accurate). The strength of such linear effects is to be expected. The velocity term 
determines the general spiral shape in the phase portrait while the displacement 
term determines the frequency of movement through the phase portrait. 
Nonlinear terms determine subtle variations in that overall structure.  

Implications and Future Directions 

The influence of certain adaptive individual psychological 
characteristics on oscillatory patterns of pain prediction accuracy may have 
implications for the self-management of pain. RA patients with low levels of 
NA as well as those with a heightened sense of control over their daily pain may 
be better equipped than their counterparts to effectively manage their pain 
because they achieve greater pain prediction accuracy. Even more, we hypothe-
size that individual psychological characteristics that lead to increased time 
spent making accurate pain predictions within cycles is adaptive for pain man-
agement. The current findings warrant future efforts to explore the association of 
pain prediction accuracy and outcomes specific to coping efficacy, pain manage-
ment and indicators of well-being.  

In the current study, NA, PA and pain control were analyzed as trait-
like variables. However, evidence of escapements in our model suggests that en-
ergy increases and diminishes at specific points in each pain prediction cycle. 
The implication is that those psychological escapements may also be oscillating 
processes rather than trait-like processes. Moreover, they may be coupled to 
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pain prediction oscillations, allowing each psychological process to influence 
pain predictions in a periodic fashion. A logical future direction is to expand the 
current nonlinear damped oscillator model to a coupled oscillator model (Butner 
et al., 2005). Coupled oscillators can be modeled by allowing two damped oscil-
lator models to interact via a spring term that allows each oscillator to push or 
pull the other (Butner et al., 2005).  

The use of dynamical systems to model pain prediction accuracy has 
several implications for the field. Previous studies of pain prediction have used a 
repeated-measures format and have typically employed regression-based appro-
aches (i.e., multiple regression, general linear models) to summarize the interde-
pendency of pain predictions. Those approaches have led to a treatment of the 
pain prediction process as static, summarized generally as overprediction (Arntz 
et al., 1990; Rachman & Lopatka, 1988) or underprediction (Arntz & Peters, 
1995; Finan et al., 2008; McCracken et al., 1993). Focusing attention on the pat-
tern of change in the pain prediction process identifies a role for oscillations in 
pain predictions across repeated measures. Because overpredictions, underpre-
dictions and accurate predictions of pain are interdependent and, to some extent, 
determinant of future accuracy levels, one should not be considered without the 
others. For example, in some samples, pain overpredictions have been shown to 
take on a unique characteristic of being resistant to disconfirmation if they are 
preceded by an underprediction (Rachman & Arntz, 1991). We argue, then, that 
a richer analysis of behavior can be achieved by modeling meaningful dynam-
ical patterns in pain predictions over time. 

Conclusion 

For the broader psychological research field, the current study 
represents an early attempt to apply nonlinear damped oscillator models to 
questions of psychological interest. Psychological processes hypothesized to 
operate in cyclical patterns can now be explained through quantitative tech-
niques. Research on chronic pain is particularly conducive to the development of 
dynamical models due to the tendency of many chronic pain disorders to cause 
spontaneous pain flares with varying levels of intensity and duration. As we 
have shown in the current study, variables that are theoretically linked to dif-
ferences in the capacity to cope with chronic pain can be included in dynamical 
models to elucidate cognitive differences between people that would otherwise 
have been treated as random noise. It is our hope that new hypotheses will be 
tested and theory will continue to develop as these techniques become more ac-
cessible to the research community. 
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ENDNOTE 
1Compared to dynamical models in the movement sciences or in 

physics, where analyses include hundreds or thousands of time points, the 28 
time points in the current study should be considered a small number. 
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