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Scholars in recent years applying the sciences of complexity to 
social and behavioral phenomena have suffered from two distinct 
problems. One group of studies focused on the production of revealing 
metaphors at the cost of analytical rigor. Another set of studies 
developed mathematical models and techniques that remained remote to 
even sophisticated students of the sciences of complexity.  

During the 1990s, however, a growing number of social 
scientists interested in complex phenomena, and dissatisfied with 
traditional research methodologies, sought new approaches for exploring 
the complexities of social dynamics. One of the developments emerging 
from this period was the use of agent-based modeling (ABM) and simu-
lation to examine how social phenomena are created, maintained and 
even dissolved. These models, although diverse in their applications and 
approaches, generally attempt to create “microworlds” or “would-be 
worlds” in a computer with the goal of determining how the interactions 
and varied behaviors of individual agents produce structure and pattern 
(Casti, 1997).  These models can be seen as a middle ground between the 
metaphor of many complex systems studies and the remote mathematics 
of many studies in the 1980s. 

ABM is essentially the application of autonomous agents 
programmed to behave in different ways when interacting with adjacent 
agents or different aspects of their environment on a dimensional grid. 
An agent, say “red”, may be programmed to exhibit one behavior, when, 
for example in contact with “blue” and “green”, and another when in 
contact with another “red” and “yellow”. The important point is that 
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ABM illustrates the importance of emergence, whereby seemingly 
simple rules and protocol problems may generate highly complex, 
unexpected behavior. And, consistent with the evolutionary dynamics of 
complex adaptive systems (CAS), small changes in the initial start values 
may produce dramatically differing results. 

Agent-based modeling (ABM) relies on a novel view of the 
creation of structure in social systems. Traditional social science 
generally assumes that social facts such as markets or cooperative 
behavior exist, and it is they that produce various forms of social 
organization and structure. ABM, on the other hand, assumes that both 
social structure and social facts such as markets or cooperative behavior 
are created from the bottom up via the interactions of individual agents. 
Rather than examining how social structure shapes behavior, ABM 
focuses, as noted above, on how local interactions among agents serve to 
create larger and perhaps global social structures and patterns of behavior 
(Berry, Kiel, & Elliott, 2002). Epstein and Axtell (1996) have described 
this approach as “social science from the bottom-up” as previously 
assumed social facts are now viewed as generated by the interactions of 
multiple local agents. 

Modeling and simulation approaches used in ABM or 
computational modeling allow us to create new worlds from scratch, 
modifying various conditions and parameters as the need arises. Agent-
based modeling thus examines “emergent” behavior as a structure and 
pattern that develops from numerous micro-level interactions. These 
models ask questions such as “how do markets and cooperative behavior 
among agents emerge”? It can be seen as “generative” social science 
because the goal is to identify the behavioral and environmental 
mechanisms that create organization and structure in the human realm. 

Epstein (1999) has identified five general elements of agent-
based models. These elements are heterogeneity, autonomy, explicit 
space, local interactions, and bounded rationality. Heterogeneity refers to 
the fact that agents differ in the “preference sets” or “rules” that guide 
their behavior during the simulation. It is this heterogeneity that is not 
only used to simulate human volition but also serves to create unique and 
surprising interactions between agents. The notion of autonomous agents 
means that there is no top down control in the model. Order or control is 
not imposed on the model, order may exist in the rules of the agents, but 
larger overarching schemas are not imposed. Evolution thus accrues from 
the bottom-up. Epstein’s third element of explicit space simply reinforces 
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the notion that the evolution of the model occurs on some defined 
landscape or n-dimensional lattice.  

Agent-based or computational models are also typified by local 
interactions. This means that agents interact with their neighbors rather 
than some distant agent far removed from the relevant landscape. The 
concept of local interactions thus promotes a simulation akin to actual 
human interaction within a defined geographic or cultural space. Finally, 
agents are subject to bounded rationality. In short, agents are driven by 
simple rules and respond to the local information generated from their 
contact with other agents. Agent-based modeling thus assumes the limits 
to rationality evidenced by a growing body of research in cognitive 
psychology.  

What we have described above reveals that agent-based models 
can be viewed as a means for exploring the behavior of CAS. CAS are 
self-organizing entities consisting of a number of individual elements 
that behave on the basis of often very simple rules. Dooley has described 
the evolution of complex adaptive systems in a manner that also exhibits 
the characteristics of agent-based model. Dooley notes, “A CAS 
behaves/evolves according to three key principles: order is emergent as 
opposed to predetermined, the system’s history is irreversible, and the 
systems’ future is often unpredictable”(1997, p. 83). These comments 
reveal the capacity for agent-based models to incorporate the critical 
behavioral components of complex adaptive systems of unpredictability, 
irreversibility and emergent behavior.  

Computational modeling as we have described offers not only a 
new approach to understanding a wide range of phenomena, it may be an 
indispensable tool that allows a researchers to answer questions about a 
range of political, economic and social dynamics that are consistent with 
CAS that would otherwise be inaccessible using traditional 
methodologies. The often contingent, nonlinear and unexpected behavior 
of complex systems means that agent-based or computational modeling 
provides unique opportunities for researchers who might otherwise be 
stymied by the nature of the phenomena they seek to understand. 

 ABM has in recent years been applied to a wide range of 
subjects and research questions, ranging from understanding patterns of 
cooperative behavior to the behavior of organizations (Patrick, Dorman, 
& Marsh, 1999; Prietula, Carley & Gasser 1998), modeling of policy 
(Bankes, 2002), the dynamics of financial markets (LeBaron, 2002) or 
the formation of international alliances (Cederman, 1997), among others.  
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THE METHODOLOGICAL RATIONALE FOR 

AGENT-BASED MODELING 
 
Two questions that surround the application of agent-based 

modeling concern why these models should be employed and under what 
circumstances ABM adds improved insight relative to other analytical 
techniques. Given the basic assumption of complexity studies that 
nonlinearity is inherent in complex systems one would assume that 
capturing and enacting nonlinearity is an essential element of ABM. In 
ABM it is the interactions of adaptive agents that typically generate 
nonlinear effects. ABM is thus helpful because these nonlinear effects 
are generally not amenable to the deductive tools of formal mathematics.  
Yet, incorporating interactions that produce nonlinear behavior into 
agent models does not alone inform the analyst as to the robustness of 
the model. 

Axtell (2000, p.i) has identified three “distinct” reasons for using 
agent-based models. The first case involves those situations in which 
mathematical equations are employed that completely describe some 
social phenomenon or process. Agent-based models in this case simply 
serve as a classical mode of simulation founded on verifying known 
relationships and outcomes. Another use of ABM within the confines of 
classical simulation are those cases in which stochastic elements are 
introduced into the model, resulting in a solution representing some 
probability distribution. Instances of this include Monte Carlo simulation 
as used in traditional operations research problems such as those 
employed in queuing models. 

A second major use of ABM involves the simulation of phenom-
ena in which relevant equations are only partially solvable. An extension 
of this logic concerns those circumstances in which the solution set 
results in equilibria that are either uncomputable or unstable. In the case 
of the existence of multiple equilibria, ABM can also be of value by 
providing a means for exploring the divergent paths to the varied 
equilibria. This point also emphasizes that even when equilibria do exist 
the network of interactions that lead to particular outcomes may generate 
multiple paths. For organizational analysts this is particularly important 
because it provides a means for assessing how agents get to the endgame. 
For example, if the desired organizational state is some improved level of 
performance, the interactions of agents and how the agents achieve that 
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end state is, analytically and managerially, more important than the end 
state itself (Kiel, in press).  

The final case for the application of ABM involves those 
instances in which the mathematics of the phenomenon are intractable. 
Instances in which the closed form of differential equations are insoluble 
typify this rationale for employing agent-based models. Consider the 
organizational case in which a manager seeks to achieve some desired 
state of change. The wise manager would have to assume some degree of 
nonlinearity as organizational agents interacted in an effort to achieve the 
desired changed state. Yet, an equation for such a complex series of 
events does not exist. Here then is an example where using agent based 
modeling makes sense simply due to the fact that a mathematical 
equation does not exist for the phenomenon. This understanding also 
suggests that in these “complex” situations ABM may be the first and 
natural analytical tool.  

These reasons for employing ABM however do not resolve the 
problems of the robustness of ABM. One run of an agent-based model, 
given the built-in risk and uncertainty of outcomes due to varying 
interactions in each model run, cannot serve as a definitive solution. If 
definitive solutions are desired then multiple runs of the model are 
necessary. The results of these multiple runs can then be assessed using 
comparative statistics to define the stability of the solution, or at least the 
stability of the multiple equilibria that may exist. The results of these 
analyses are probability distributions of the expected outcomes of model 
runs regardless of the initial conditions. 

Traditional hypothesis testing also serves as another goal of 
ABM. Hypotheses concerning the emergence of structure or the success 
of varying agent strategies may serve to confirm or negate many theories 
of social behavior. ABM may also serve as a platform for theory testing 
across a wide variety of social phenomena. This notion generates the 
realization that agent-based models may become the “experimental 
laboratory” that has generally been absent in social science research. 
 

THE CONTENTS OF THIS SPECIAL ISSUE 
 
As with any emerging field, there is considerable diversity in the 

approaches that can be labeled as agent-based modeling. Some 
approaches take an evolutionary strategy, while others use a more 
learning-theoretic paradigm. At the core of all such models, however, is a 
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focus on agents interacting on “landscapes” consisting of a two 
dimensional grid. Agents are energized by rules that direct their behavior 
in these landscapes, which potentially can represent the diversity of 
social environments in which humans interact, bridging the “micro-
macro” divide and provide insights into how seemingly simple rules 
governing agent behavior can produce surprising and unexpected results. 

This special issue of Nonlinear Dynamics, Psychology, and Life 
Sciences is organized in a fashion that reflects the ability of agent-based 
modeling to bridge the so-called “micro-macro” divide. In other words, 
ABM can be exploited to model processes at very fundamental, micro 
levels of analysis such as cooperation among individuals to intermediate 
levels such as organizational behavior in firms or other entities, all the 
way to “macro” phenomena such as the behavior of states or global 
economic processes. Therefore, the articles are presented in a sequence 
that moves from more micro-level applications of ABM to increasingly 
macro-level applications. Two of the most micro-level analyses examine 
non-human systems, specifically the behavior of ant colonies and ovarian 
cycle variability in research rats. These articles help illustrate the highly 
impressive search of agent-based methodologies. 

Stephen Guerin’s study exploits the analysis of insect behavior 
as an instance of the important overarching principle of self-organization. 
While self-organization is critical to the phenomenon we refer to as 
complex adaptive systems, the theoretical foundation of self-organization 
requires, as Guerin notes, further study. “Emergence of Constraint in 
Self-Organizing Systems” demonstrates measures of order creation and 
constraint production, then uses these measures to evaluate several 
important questions involving the nature of complex systems, including 
the relationship of constraints to entropy-producing processes, the role of 
positive feedback loops in structure formation and the extent to which 
constraint decay plays a role in self-organizing dynamics. The role of 
ABM in helping answer these questions yields some potentially crucial 
theoretical insights that may lead to important advances in the modeling 
of social behavior. 

Jeffrey Schanks' article, “Avoiding Synchrony: Ovarian Cycle 
Length as a Strategy for Mate Choice” is another impressive micro level 
application of computational modeling on display in this special issue. 
Schanks incorporates both formal mathematical models with agent-based 
approaches to explore ovarian cycle variability in Norway rats. Schanks’ 
work is based on the somewhat counter-intuitive finding that female 
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mammals do not necessarily synchronize ovarian cycles, unlike the 
common belief that high degrees of synchronization occur when female 
mammals are in close proximity to each other. The simulation results 
yield interesting findings concerning the behavior of mammals in 
ecologically simulated contexts, which may have important implications 
for our understanding of population dynamics and ecosystem stability. 

Steven Phelan’s contribution, “Using Agent-Based Simulation to 
Examine the Robustness of Up-or-Out Promotion Systems at 
Universities” examines the robustness of an “up-or-out” system to 
various labor supply contingencies, demonstrating that (we denizens of 
academe perhaps suspected this for a long time!) up-or-out promotion is 
not always optimal when compared to serenity and merit based 
promotion systems. 

A related interest in organizational behavior is seen in Dal 
Fourno and Merlone’s article entitled “Personal Turnover in 
Organizations: an Agent-Based Simulation Model”. They use a 
heterogeneous agent approach to explore important dynamics, 
specifically effort level within the organization. The paper combines both 
a theoretical treatment of this issue as well as offering a simulation 
approach as complexity is added to the model. The findings offer 
important insights into the development of hiring and firing policies and 
the role of incentives within organizations. 

At the most “macro” level of analysis we have Jasmina Arifovic 
and Paul Masson’s “Evolutionary Models of Exchange Rate Behavior”. 
The authors note the persistent fluctuations in exchange rates since the 
adoption of flexible exchange rates in 1972 following the collapse of the 
Bretton Woods frameworks. But, as they point out, various 
methodological approaches have failed to explain the substantial 
variation in rates over time. Using a computational model in which 
boundedly rational agents’ beliefs are allowed to evolve over time 
appears to best capture exchange rate dynamics. Arifovic also shows 
how such dynamics are consistent with the behavior of human 
experimental subjection. This paper adds important knowledge to our 
understanding of evolutionary forces governing economic change. 

Steven Bankes and Robert Lampert’s contribution, “Robust 
Reasoning with Agent-Based Modeling” offers important insights into 
the use of ABM by policymakers. Drawing upon a series of macro-level 
policy relevant phenomena, Bankes and Lempert make a crucially 
important point. Essentially, the authors want to show that, given the 
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probabilistic and contingent nature of ABM outcomes in any given 
simulation (i.e. the same simulation that is repeated with the same values 
and specifications may produce a different outcome), the future of ABM 
in the policy context requires an appreciation of the importance that 
ensembles of models may play. Ensembles allow us to judge the 
invariant properties of different models, and thus help to establish 
plausible conclusions about various types of policy interventions. 

Even though the application of agent-based modeling to the 
social and behavioral sciences is quite recent given the substantial 
computing requirements, it is nonetheless important to appreciate that 
ABM is really one facet of the much larger arena of research in complex 
nonlinear systems. Leslie Henrickson’s “Trends in Complexity Theory 
and Computation in the Social Sciences” offers a citation analysis of the 
use of chaos and complexity theory and computational simulation in the 
published literature over the 1971-1999 time period. Her analyses reveal 
interesting insights into the evaluation of the growing field of complex 
adaptive systems and the more recent application of computational 
simulation top furthering our understanding of complex systems. 

Complex system frameworks have offered tantalizing insights 
into a wide range of multilevel phenomena such as patterns of 
cooperation and non-cooperation (Axelrod, 1997), to the dynamics of 
macroeconomic processes (Brock, 1988; Holland, 1988), electoral 
dynamics and political realignments (Brunk, 2001) or the collapse of 
entire political and social systems (Tainter, 1998). A very practical 
means for accessing the knowledge produced by agent-based models is 
presented in Holland’s notion of agent-based models as policy flight 
simulators. Given that the parameters of agent-based models can be 
altered leading to divergent outcomes such models would seem to 
excellent tools for policy makers. While only the naïve would think that 
such tools would serve to override ideology in political debates in may 
lead to the enhanced recognition that public policy can lead to multiple 
possible outcomes and to a greater recognition of likely yet unintended 
consequences. 

Perhaps most importantly, though, agent-based modeling may be 
the method and the tool that brings a level of acceptance and 
functionality to the sciences of complexity that has heretofore been 
missing. Consider the recent article in the Harvard Business Review by 
Bonabeau and Meyer (2001) on agent-based modeling and its application 
to phenomena from scheduling factory equipment to business strategy. 
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With an entry into this informational venue and considering the 
readership of such a journal, it may be that agent-based modeling may be 
the tool that moves the complexity sciences from the somewhat arcane to 
the profoundly practical.  
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